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Abstract. Here, the capability of the chemical weather forecasting model CHIMERE (version 2017r4) to reproduce surface

ozone, particulate matter and nitrogen dioxide concentrations in complex terrain is investigated for the period from June 21

to August 21, 2018. The study area is the northwestern Iberian Peninsula, where both coastal and mountain climates can

be found in direct vicinity and a large fraction of the land area is covered by forests. Driven by lateral boundary conditions

from the ECMWF Composition Integrated Forecast System, anthropogenic emissions from two commonly used top-down5

inventories and meteorological data from the Weather Research and Forecasting Model, CHIMERE’s performance with respect

to observations is tested with a range of sensitivity experiments. We assess the effects of 1) an increase in horizontal resolution,

2) an increase in vertical resolution, 3) the use of distinct model chemistries and 4) the use of distinct anthropogenic emissions

inventories, downscaling techniques and landuse databases. In comparsion with the older HTAP emission inventory downscaled

with basic options, the updated and sophistically downscaled EMEP inventory only leads to partial model improvements and10

so does the computationally costly horizontal resolution increase. Model performance changes caused by the choice of distinct

chemical mechanisms are not systematic either and rather depend on the considered anthropgenic emission configuration and

pollutant. Albeit the results are thus heterogeneous in general terms, the model’s response to a vertical resolution increase

confined to the lower to middle troposphere is homogeneous in the sense of improving virtually all verification aspects. We

conclude that, as long as the aforementioned top-down emission inventories are used, it is generally not necessary to use a15

horizontal model mesh much finer than the native grid of the inventories. A relatively coarse horizontal mesh combined with

20 model layers between 999 and 500 hPa is sufficient to yield balanced results. The chemical mechanism should be chosen as

a function of the intended application.
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1 Introduction20

Motivated by the air quality legislation of the European Union (EU, 2008), many governmental air quality departments are

currently demanding air quality forecasting schemes based on numerical models (Thunis et al., 2016), and the need for accu-

rate and computationally efficient predictions in this field is perhaps greatest than ever before. For Europe as a whole, the most

important real-time prediction system available to date is provided by the Copernicus Atmosphere Monitoring Service (Maré-

cal et al., 2015), comprising an ensemble of currently seven chemical weather forecasting (CWF) models1 run for the entire25

continent at a horizontal resolution of 0.1◦. to 0.25◦ in longitude and 0.1◦ to 0.2◦ in latitude. In addition to this short-term

prediction system, several large research initiatives have been issued during the last two decades in order to assess the climato-

logical properties of atmospheric composition, including the detection of long-term trends resulting from emission reductions

induced by the Convention on Long-range Transboundary Air Pollution (CLRTAP, 2019). The final aim of these efforts is to

find model configurations, or ensembles thereof, that can be used as surrogates for real observations in order to assess whether30

emission reductions actually have lead, or would lead, to changes in the atmosphere’s composition on climatological time-

scales (Vautard et al., 2006; Jonson et al., 2006; Colette et al., 2011; Wilson et al., 2012; Banzhaf et al., 2015; Colette et al.,

2017; Im et al., 2018b, a; Vivanco et al., 2018; Theobald et al., 2019).

Complementary to these large-scale efforts, usually conducted with a single configuration of a given model (Bessagnet et al.,

2016), small-scale sensitivity tests for particular models are still relevant since they can be run with more sophisticated model35

configurations than their large-scale counterparts and are therefore more interesting for regional prediction systems, such as

those demanded by national or regional governments (Banzhaf et al., 2012; Beegum et al., 2016; Flamant et al., 2018). Further,

following the concept of seamless prediction (Palmer et al., 2008), lessons learned from short-term prediction systems for

relatively small geographical areas might as well be important for longer lead-times and larger areas.

Previous sensitivity studies have identified several factors influencing the models’ capability to correctly reproduce observed40

values, hereafter referred to as “model performance” (Giorgi and Francisco, 2000; Chang and Hanna, 2004). Among these

factors, the meteorological model used to drive the chemical model and the accuracy of the underlying emission datasets play

a key role and have been assessed in a number of studies (Menut, 2008; Markakis et al., 2015; Colette et al., 2017; Otero

et al., 2018; Vivanco et al., 2018). The resolution of the model mesh used to discretize the chemical reactions and atmospheric

dynamics is also important and, when it is increased, a trade-off between potential performance gains and computational cost45

must been made in practice. In what concerns the horizontal resolution, performance gains have been reported up to a scale

of approximately 12 km for a number of models, such as WRF-CHEM and CHIMERE (Valari and Menut, 2008; Schaap

et al., 2015; Crippa et al., 2017). However, a further resolution increase does not guarantee further performance gains. Namely,

beyond the 12 km threshold, Misenis and Zhang (2010) reported heterogeneous results for WRF-CHEM that strongly depend

on the considered time period. For the use of CHIMERE and focussing on surface O3 concentrations, Valari and Menut (2008)50

1see Kukkonen et al. (2012) for an overview of these models
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even found a performance loss which they attributed to a noise increase in the emission fluxes and meteorological input data

at higher resolutions. Regarding the role of vertical resolution, an increase therein has been found to improve the modelled

particulate matter (PM) concentrations during desert dust events when using WRF-CHEM (Teixeira et al., 2016). CHIMERE’s

performance, however, was found to be only weakly affected by this kind of resolution increase (Menut et al., 2013a; Markakis

et al., 2015).55

Representing the number and complexity of the considered chemical reactions, several chemistry mechanisms are usually

available for a given model and switching from one mechanism to another can also affect the model’s performance (Balzarini

et al., 2015; Karlický et al., 2017). In recent CHIMERE versions, the SAPRC-07A mechanism (hereafter: SAPRC) has been

included as an alternative to the full or reduced versions of the Melchior mechanism (Carter, 2010; Mailler et al., 2017) but, to

the authors’ knowledge, related sensitivity tests are sparse to date.60

A common limitation of small-scale sensitivity studies is that their conclusions, strictly speaking, only hold for the consid-

ered region, time period or season of the year. In this context, most of the aforementioned conclusions for CHIMERE (the

model applied here) have been drawn for the Île de France region, which is densely populated, relatively flat and not directly

influenced by sea-salt emissions. The model has been applied for a number of other regions but the map is still incomplete and

sensitivity testing is not the main focus of the corresponding studies (Mazzeo et al., 2018; Menut et al., 2018; Monteiro et al.,65

2018; Brasseur et al., 2019; Deroubaix et al., 2019).

This is where the present study comes into play: For the two month period from June 21 to August 21, 2018 a series of

19 sensitivity tests has been run with CHIMERE over the northwestern Iberian Peninsula, a region characterized by forested

mountain terrain, a complex coastline and the advection of sea-salt from the surrounding Atlantic Ocean that is quite different

from the Île de France region. The applied tests will quantify the effects arising from 1) an increase in model resolution (vertical70

and/or horzizontal), 2) switching from one chemistry mechanims to another (full Melchior or SAPRC in this case) and 3)

changing the applied anthropgenic emissions inventory, downscaling strategy and landuse database. To this end, version 2017r4

of the CHIMERE model is used (Mailler et al., 2017) in combination with the HTAP v2.2 and EMEP emission inventories of

the years 2010 and 2017 respectively (Janssens-Maenhout et al., 2015; EMEP/CEIP, 2019). Long-range transport of e.g. ozone

and its precursors or Saharan dust are not accounted for by running CHIMERE on a large domain covering all relevant remote75

emission sources (Bessagnet et al., 2017; Pay et al., 2019), but by using a far smaller domain ingesting the global forecasts

provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) Composition Integrated Forecasting system

(C-IFS) at its lateral boundaries (Flemming et al., 2015). This strategy largely reduces the computational costs and is an

interesting alternative to simulating long-range transport phenomena with the CHIMERE model itself (Bessagnet et al., 2017).

In Section 2, the applied data, model configurations and verification measures are described. Results are presented in Section80

3 and a discussion and some general conclusions are provided in Section 4.
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2 Data and Methods

In this section, the meteorological input data and general characteristics of the CHIMERE experiments are depicted first

(Section 2.1), followed by a description of the two applied emission inventories (Section 2.2) and individual model experiments

(Section 2.3). The in-situ station network used as reference for verification is introduced in Section 2.4. The section closes with85

a description of the verfication measures used to estimate CHIMERE’s performance for the applied experiments (see Section

2.5).

2.1 Meteorological Input and General Characteristics of the CHIMERE Experiments

The meteorological input data for the CHIMERE experiments is provided by the Weather Research and Forecasting (WRF)

model version 3.5 (Skamarock et al., 2008), driven by Global Forecast System (GFS) forecasts initialized at 00 UTC (Caplan90

et al., 1997). WRF is run on three domains, a continental-scale domain having a resolution of 36km, followed by a regional

domain covering southwestern Europe at a resolution of 12km and, finally, a 4km domain covering our study region, the

northwestern Iberian Peninsula. For these domains, WRF is executed with a minimum time step of 216, 72 and 24 seconds

and a maximum time step of 360, 180 and 60 seconds, respectively. All domains comprise 33 vertical layers with a model

top at 10 hPa. A detailed overview of the WRF physics can be found in Table 1. In this configuration, WRF has been run for95

now more than a decade at the meteorological office of the Galician government (MeteoGalicia) in order to provide real-time

meterological foreasts for the northwestern Iberian Peninsula. It is able to simulate the orographic and coastal effects on the

local weather reasonably well, which is illustrated in supplementary Figure 1 for a typical summertime heat day (August 5th,

2018).

With this meteorological input, version 2017r4 of the CHIMERE model is run on two domains: a coarse domain having a100

horizontal resolution of 0.15◦× 0.15◦ (longitude× latitude), and a fine domain, nested into the former, having a resolution

of 0.05◦× 0.04◦ (see Figure 1a). Note that the terms “coarse” and “fine” shall hereafter refer to the CHIMERE domains,

not the WRF domains, if not otherwise stated. Biogenic emissions comprising VOCs and NO are from the MEGAN model

version 2.04 (Guenther et al., 2006) and mineral dust emissions within the CHIMERE domains are calculated on the basis

of the United States Geological Survey landuse dataset (Loveland et al., 2000). The Alfaro and Gomes (2001) saltation and105

sandblasting scheme, optimized by Menut et al. (2005), and the surface wind threshold described in Shao and Lu (2000)

are used throughout all experiments. The effect of soil moisture on dust emissions (Fécan et al., 1998) is activated and so

are sea-salt emissions. Vertical advection is achieved by the upwind scheme, horizontal advection by the more complex van

Leer (1979) scheme. Carbonaceous species as well as the interaction between aerosols and gases are taken into account by

the model and the number of Gauss-Seidel iterations is set to 3 because the model occasionally develops unrealistic waves110

with lower numbers. Wind speed reduction in urban areas (the so called “urban correction”) is deactivated, and so is the

resuspension process. A complete list of the internal CHIMERE parameters common to all sensitivity experiments is provided

in Table 2. For a full description of these parameters, the interested reader is referred to the CHIMERE user manual available

at http://www.lmd.polytechnique.fr/chimere.
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Along the lateral boundaries of the coarse domain, the concentrations of the chemical species required by CHIMERE are115

provided by three-hourly forecasts of the ECMWF Composition Integrated Forecasting System (C-IFS) initialized at 00 UTC

(Flemming et al., 2015). This global model comprises 60 vertical levels and has a horizontal resolution of ≈ 80km. In case a

chemical species required by CHIMERE is not provided by C-IFS, the monthly climatological mean values from the MACC

reanalysis (Inness et al., 2013) are used instead. As an exception, sea-salt aersols from MACC are applied albeit they are

also available from C-IFS because the latter system was found to overestimate the corresponding concentrations in our study120

region. This bias is of minor importance for the summer season considered here, but would lead to an overestimation of the

PM concentrations in the other, stormier seasons of the year. Similarly, the applied dust aersols from C-IFS are scaled by a

factor of 0.6 in order to compensate the positive bias observed during the two Saharan dust events occurring in the time period

considered here. For all other chemical species from C-IFS, a scaling factor of 1 (i.e. no scaling) is used. The fact that the

chemical and physical boundary conditions for our CHIMERE forecasts come from different prediction systems is assumed to125

be of minor importance for the short leadtimes analysed here (27 hours from initialization at the utmost).

To eliminate unwanted effects related to the spin-up, the daily WRF forecasts are initialized with the Digital Filtering

Initialization (DFI) technique (Skamarock et al., 2008) and the first 3 integration hours are not used as meteorological input

to CHIMERE. Consequently, CHIMERE is initialized on 03 UTC, using initial conditions from the model execution of the

previous day, and is then integrated until 03 UTC of the following day to complete one forecast day. This procedure is repeated130

for each day from June 20, 2018 to August 21, 2018 and the resulting model output is then concatenated to form time series

covering the entire time period. Verification against surface observations as described in Section 2.5 begins on June 21st 03

UTC, so CHIMERE is permitted to spin-up during the first 24 hours of the integration.

2.2 Anthropogenic Emission Inventories, Landuse Databases and Postprocessing

To assess CHIMERE’s combined sensitivity to changes in the anthropogenic emissions, downscaling strategy and landuse135

database, two distinct inventories and postprocessing techniques were selected: The EMEP dataset for the year 2017 on the

one hand (EMEP/CEIP, 2019) and the HTAP v2.2 dataset for the year 2010 on the other (Janssens-Maenhout et al., 2015),

both provided on a regular 0.1◦× 0.1◦ latitude-lonitude grid. To disaggregate the raw data from these inventories, the publicly

available program emiSURF shipped with the CHIMERE source code was used (Mailler et al., 2017), which was here modified

to process EMEP data on the recently published 0.1◦× 0.1◦ grid. Spatial disaggregation is achieved by downscaling the140

emissions from their native grid to an auxiliary high-resolution grid at 1 km, followed by an upscaling to the two target

domains displayed in Figure 1a. In the downscaling step, different proxies can be used to redistribute the raw emission data on

the subgrid-scale, among which landuse categories are the standard option of the emiSURF program.

To downscale the raw emissions from the HTAP v2.2 inventory, landused categories from the United States Geological

Survey (USGS, Loveland et al. (2000)) were used as the only proxy except for the “population downscaling” experiment, for145

which population density was used as an additional proxy (Gallego, 2010). Note that this kind of downscaling affects the NO2

and particulate matter emissions from SNAP sector 2, originating mainly from domestic fuel burning.
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To spatially regrid the EMEP inventory, road traffic density and the locations of large point sources were used in addition to

population density and landuse categories, the latter provided by the GlobCover dataset (Bicheron et al., 2011). The road traffic

proxy affects the magnitude and allocation of the NO2 emissions caused by this kind of activity whereas the locations of large150

point sources were used to re-allocate the corresponding emissions on the subgrid scale. The temporal disaggregation of the

raw anthropogenic emission data to the timescale required by CHIMERE was accomplished by the use of seasonal, weekly

and hourly profiles for each pollutant and activity sector, based on the standard information in the CHIMERE pre-processors

(Mailler et al., 2017).

The above explained large differences between the spatial downscaling procedures of the two emission inventories were155

applied intentionally to assess CHIMERE’s performance for the use of an up-to-date and sophistically downscaled inventory

(EMEP) versus an older inventory downscaled with basic parameters (HTAP v2.2). For ease of understanding, these will

hereafter be referred to as “emission configuration 1” and “emission configuration 2” respectively.

2.3 Specific Configuration of the Sensitivity Tests

To explore the influence of vertical resolution on model performance, 10 layer experiments are compared to 20 layer exper-160

iments, the lowermost layer being located at 999 hPa and the uppermost at 500 hPa in all cases (see Figure 1c+d). Thus, an

increase in vertical resolution refers to a refinement in the lower to middle troposphere. An extension of the model top to,

e.g., 200 hPa has been proposed in previous studies since some dust intrusions may extend to pressure levels above 500 hPa

(Bessagnet et al., 2017). However, by design of our experiments, most of the dust intrusions’ trajectory is simulated by the

global atmospheric composition model providing the lateral boundary conditions (C-IFS) rather than internally simulated by165

CHIMERE and, therefore, elevating the model top is assumed to be of minor importance here.

The effect of an increase in horizontal resolution is tested by comparing the model output obtained with the coarse resolution

domain with that of the fine resolution domain nested therein (see Figure 1a,e and f). In all but one fine resolution experiment

(the “coarse meteorology” experiment defined below) the horizontal resolution increase is undertaken in both CHIMERE and

WRF, meaning that the combined effect is assessed. Finally, the 2 horizontal and 2 vertical configurations are run seperately170

with emissions configuration 1 and 2 as defined in Section 2.2.

Version 2017r4 of the CHIMERE model offers the possibilty to use three distinct “chemical mechanisms” describing the

gas-phase chemistry considered by CHIMERE. The “full Melchior” mechanism consists of 300 reactions and 80 gaseous

species and is the most complete but also most computationally demanding of three. This is why a reduced version with

120 reactions and 40 species, the so called “reduced Melchior” or “Melchior 2” mechanism, is available as well. From version175

2016a onwards, the SAPRC mechanism Carter (2010) is implemented as the third mechanism, offering a chlorine chemistry not

considered in any of the two Melchior mechanisms (Mailler et al., 2017). With 72 gaseous species and 218 chemical reactions,

SAPRC’s complexity and computational costs are somewhat lower than for full Melchior, but far superior to reduced Melchior.

For the European summer 2015, reduced Melchior and SARPC have been compared in Menut et al. (2013b), who found large

differences in the composition of organic nitrogen between the two which could potentially influence the spatial distribution of180

ozone production. They also found that the systematic overestimation of surface ozone reported in mainy CHIMERE studies
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is slightly less a problem when using SAPRC. In the present study, however, the full version of the Melchior mechanism is

applied instead of the reduced one, meaning that the aforementioned findings might not hold here.

Finally, three additional sensitivity tests are applied with constant anthropogenic emissions (HTAP), horizontal and vertical

resolution (fine mesh, 20 layers), chemistry mechanism (full Melchior) and landuse database (USGS). First, the effects of using185

the population proxy for downscaling the raw HTAP emissions are explored in what is called the “Population Downscaling”

experiment (FM20H-P) hereafter. Then, the fine horizontal CHIMERE mesh is run with the coarse WRF mesh in the “Coarse

Meteorology” experiment (FM20H-C) in order to see whether low resolution meteorological input deteriortates CHIMERE’s

performance. Finally, the effects of missing biogenic emissions are explored by intentionally turning them off in the "No

Biogenic Emissions" experiment (FM20H-N).190

An overview of all applied sensitivity tests is provided in Table 3. In the last column, the computational costs for a typical

summertime heat day (August 5th, 2018) are listed for the emission configuration 1 experiments. The runtimes of the respective

configuration 2 experiments are in very close agreement (e.g. for CS10H and CS10E) but cannot be exactly stated since they

were unfortunately not saved.

2.4 The Air Quality Monitoring Network in Northwestern Spain (Galicia)195

The Galician air quality monitoring network comprises a total of 46 stations which, as a function of the main pollution source

or the lack thereof, can be grouped into background, industrial and traffic sites (see Figure 1b). Currently, 14 stations are

directly maintained by the Galician regional government (Xunta de Galicia). The remaining 32 stations are maintained by

industrial companies which are supervised by the government in order to assure the same measurement standards, specified in

the national UNE-EN norm.200

The quality control of the corresponding data is accomplished manually by trained technical staff of the regional government,

i.e. is centralised in one institution. First, outlier values are detected by comparing a suspicious value to the typical time series

behaviour at the considered site and at the surrounding sites. Once the outlier is detected, its validity is determined taking into

account inter-variable relationships, potential power breakdowns, calibration errors, damages and changes in the topographic

features surrounding the station. This way, a quality controlled observational dataset has been developed which, at some205

locations, is now nearly a decade long. This dataset serves as reference for model verification.

2.5 Applied Verification Measures

Here, the temporal agreement between the modelled and observed time series is measured in terms of the Pearson correlation

coefficient (R), the percentage bias (see Equation 1), and the standard deviation ratio (see Equation 2):

BIAS =
m− o
o

× 100 (1)210
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RATIO =
σm

σo
(2)

, where m, o, σm and σo are the modelled and observed values for the temporal mean and standard deviation, respectively.

These measures are applied separately for the daily maximum, minimum and hourly time series of NO2, O3, PM10 and

PM2.5. Note that the chosen verification measures are complementary to each other since they cover different time series

aspects. Namely, BIAS and RATIO measure the model’s capacity to reproduce the observed temporal mean and dispersion215

whereas R looks at the similarity in day-to-day variability irrespective of errors in the mean and dispersion. The perfect scores

for BIAS, RATIO and R are 0, 1 and 1, respectively.

In addition, the mean absolute error (MAE) is a good measure of overall performance, and is here applied as a skill score

(mean absolute error skill score, MAESS), i.e. as percentage deviation from the error of a reference experiment:

MAESS =
(

1− MAEi

MAEref

)
× 100 (3)220

, where MAEi is the error a specific experiment i and MAEref the error of the experiment CS10E, used as reference

throughout the present study since it is the computationally least expensive experiment (see Table 3). Positive values indicate

performance gains, negative values performances losses with respect to the reference (Jolliffe and Stephenson, 2012). These

verification measures are applied to hourly mean observations and hourly model data as provided by CHIMERE and, also, to

the daily minimum and maximum values obtained from the former. All verification results are for the lowermost model layer225

whose upper limit is located at 999 hPa, i.e. roughly 10m above ground.

The aforementioned temporal verification scores are calculated separately for each station exceeding the 80% threshold of

valid values and are then visulized either by overlay maps or boxplots. The centre line of each boxplot refers to the median

value of the group of point-wise temporal verification results and the box to the interquartile range (IQR) of this group. The

whiskers extend from the 25th percentile minus 1.5 × IQR at the lower end to the 75th percentile plus 1.5 × IQR at the upper230

end. Outlier verification results lying beyond these limits are not shown since their inclusion would blow up the scale of the

figures and thus hamper their interpretabilty.

Apart from these temporal verification scores, the spatial bias (SBIAS, S = “spatial”), correlation coefficient (SR), standard

deviation ratio (SRATIO) and mean absolute error (SMAE) were calculated on the pointwise temporal mean values in order

to assess whether the spatial statistics of the average pollutant concentrations are captured by the model. Likewise, the same235

scores have been applied on the pointwise temporal standard deviation values to assess whether the model reproduces the

spatial statistics of temporal variablity.
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3 Results

3.1 Maximum Values

3.1.1 Temporal Mean and Standard Deviation240

Fig. 2 shows the temporal mean values of the daily maximum concentrations seen in observations (the dots) plotted on the

respective model value (the underlying pattern) for the 4 experiments driven with emission configuration 1 and the chemical

mechanism SAPRC (CS10E, CS20E, FS10E and FS20E, row 1-4). Rows are ordered so that the first pair refers to the coarse

horizontal mesh and the second to the fine one. Further, the 10 and 20 vertical layer experiments are placed on top of each

other to assess the effects of an increase in vertical resolution. In the fifth row, the fourth experiment (high hores, 20 layers)245

is replicated with emission configuration 2 to show the effects of a combined change in the choice of the anthroponenic

emission inventory (from EMEP to HTAP), downscaling technique (from landuse, populatuion and traffic downscaling to

landuse downscaling only) and landuse database (from Globcvoer to USGS). In the header of each subplot, the spatial bias

(SBIAS, in ug/m3), correlation coefficient (SR), standard deviation ratio (SRATIO = σmodel/σobs) and mean absolute error

(SMAE) of the modelled vs. observed temporal mean values is provided.250

As can bee seen from Figure 2, an increase in horizontal resolution improves the model’s performance for PM2.5 by

reducing SBIAS and by bringing SRATIO closer to unity. For NO2 and O3, however, model performance either does not

improve or clearly deteriorates. Most notably, SBIAS and SRATIO increase, the latter exceeding a value of 2, which means

that the spatial dispersion of the modelled mean NO2 values is more than twice the observed one. As will be shown below (see

Section 3.1.2), these error increases are likely associated with the population downscaling technique used to disaggregate the255

raw EMEP emissions.

An increase in vertical resolution reduces SBIAS by up to 2.4 ug/m3 (i.e. 40%) for the mean O3 values and by up to 1.0

ug/m3 (i.e. 83%) for the mean PM2.5 values. For the latter pollutant, vertical refinement is much more efficient when using

the fine horizontal mesh. However, these improvements are limited to SBIAS and do not affect the other spatial performance

measures.260

For the fine horizontal mesh and 20 vertical layers, a switch to emission configuration 2 (i.e. from FS20E to FS20H, compare

rows 4 and 5) translates into an improvement of SRATIO for NO2 and O3 but to a worsening for PM2.5. Also, results for

FS20H are in closer agreement with CS20E than with FS20E, which points to the fact that the temporal mean values are more

senstitive to the particular setup of the downscaling technique than to the sole differences in raw inventories.

In all considered experiments, the simulated mean O3 concentrations are considerably higher over the sea than over land,265

which is in line with Terrenoire et al. (2015) and can be explained by reduced dry deposition and nighttime destruction byNO2

over the sea resulting from a reduced surface roughness and NO2 availability there (Davies et al., 1992; O’Hare and Wilby,

1995). Since this land-sea contrast is not seen in observations, the SR values for all experiments is essentially zero. This can

be either explained by the lack of off-shore background observations (note that all available coastal sides are affected by urban
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pollution) or by the fact that the reduced ozone destruction over the sea is less pronounced in the model than in the real world,270

translating into a positive bias there.

Figure 4 shows the temporal standard deviation of the daily maximum concentrations as seen in observations vs. those

seen in the model, i.e. the model’s capability to reproduce the observed temporal variability. In general, CHIMERE tends

to underestimate this kind of variability, i.e. is plagued by underdispersion (SBIAS is negative). An increase in horizontal

resolution alleviates this problem for PM2.5 and even leads to a pronounced overdispersion forNO2 (i.e. to a positive SBIAS)275

but does not noticeably alter the results for O3. For PM2.5, SR is much improved when considering the fine horizontal mesh.

Contrary to the findings for the temporal mean, temporal variablity is more sensitive to a horizontal resolution increase than to

a verical resultion increase. Except for PPM2.5, the impact of a switch in the emission configuration is less pronounced for

the temporal standard devation than for the aformentioned temporal mean (compare rows 4 and 5 in Fig. 3 and 4)

3.1.2 Full Temporal Verfication280

Fig. 5 shows the verficiation results of all applied experiments as ordered in Table 3) for the daily maximum NO2 and O3

concentrations. The perfect score for a given verification measure is indicated by a red vertical line. As can be seen from

the figure, the NO2 concentrations are generally underestimated by the model, except for the four emission configuration 1

experiments run on a high horizontal resolution (see Fig. 4a). Emission configuration 2 is plagued by larger median biases

(see vertical orange lines within the boxes) than configuration 1 but has the advantage of a lower spatial spread in the results285

(see width of the boxes and whiskers). When applying a high horizontal resultion, this bias is reduced on average (see median

values) but the aforemantioned spread is largely increased. While the effects of a vertical resolution increase and/or switch

in the applied chemical mechanism are negligible, the effect of population dowscaling is considerable. Namely, the smallest

median bias and largest spatial spread among all experiments is yielded if the raw HTAP emissions are disaggregated this way

(see FM20H-P in Fig. 4a).290

The structure of the verfication results for the standard deviation ratio (see Equation 2) is in very close agreement with the

aforementioned structure found for the percentage bias and virtually indentical lessons are learned (see Fig. 3a+b).

The model’s capablity to simulate the temporal sequence of the observations, here measured with the Pearson correlation

coefficient (R), is most improved by an increase in the horizontal resolution (see Fig. 4c). Emission configuration 1 yields

systematically better results than configuration 2 (compare experiments ending on E with those ending on H in Fig. 4c). As295

opposed to the bias, the spatial spread of the correlation coefficient is larger for the coarse horizontal resolution than for the

fine one, particularly if emission configuration 1 is used (compare the spread of the “C...” type experiments in Fig. 4a+c). The

full Melchior mechanism yields slightly better correlation coefficientsis than SAPRC and so does the use of 20 instead of 20

vertical layers (see 4c).

As indicated by Fig. 4d, the MAESS of the reference experiment CS10E is improved only by the CM20E experiment,300

meaning that the use of 20 vertical layers together with the full Melchior mechanism is sufficient to achieve optimal results for

this measure. A horizontal resolution increase is not necessary and is actually counterproductive if emission configuration 1 is

used.
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The inclusion of the population proxy in the downscaling procedure of the HTAP inventory leads to a sharp decrease in the

spatial median MAESS and to the largest spatial spread among all experiments (see FM20H-P in Fig. 4d). In comparsion, the305

use of coarse meterological input data or removal of biogenic emissions has much smaller effects on the model’s performance

(compare FM20H-C and FM20H-N with FM20H in Fig. 4d)

As shown in Fig. 4e and f, CHIMERE overestimates the temporal mean and underestimates the temporal variability of the

daily maximum O3 concentrations. The effect of the performance factors is similar for each of the four applied verification

measures. In general, the respective error is improved by a vertical resolution increase and by applying full Melchior instead310

of SAPRC, but is deteriorated or not improved when the horizontal resolution is increased. As an exception, SAPRC generally

yields better correlation coefficients if the fine horizontal mesh is used (see 4g). Contrary to Menut et al. (2013b), average

O3 concentrations are larger for the SAPRC mechanism than for full Melchior. When considering MAESS, the emission

configuration is the most influential factor on model performance, with configuration 1 clearly outperforming configuration

2 (see Fig. 4h). As was the case for maximum NO2, 20 vertical layers yield better results than 10 layers and, for the use315

of emission configuration 1, the 20 layer setup performs nearly as well for the coarse horizontal mesh than for the fine one,

meaning that the former is again preferable in case computational resources are limited (see last column in Table 3).

The full temporal verification results for the daily maximum PM2.5 and PM10 concentrations are displayed in Fig. 5.

As shown in panels a+b and e+f, CHIMERE generally understimates the temporal mean value and the temporal variability

for both size fractions. The most important peformance factor is the emission configuration, yielding smaller bias values with320

configuration 1 (see Fig. 5a+e) and better correlation coefficients with configuration 2, particularly for the fine particles (Fig.

5c+g). The effects of a horizontal resolution increase depend on the considered emission configuration and particle size fraction.

Namely, configuration 1 improves the bias and standard deviation for both size fractions (Fig. 5a+b and e+f) but has no effect

on the correlation coefficient (Fig. 5c+g). Configuration 2, in turn, improves the correlation coefficient of the fine particles

(Fig. 5c), but does not affect the bias nor the standard deviation ratio for any of the two particle size fractions (5a+b and e+f).325

A vertical resolution increase improves the bias for both particles sizes and, if a fine horizontal mesh is applied in addition,

also the standard deviation ratio for the fine particles. The correlation coefficient, however, cannot be improved by this kind

of resolution increase and even deteriorates for some experiments (Fig. 5c+g). Regarding overall performance as measured by

the MAESS (5d+h), SAPRC yields better results than full Melchior for nearly all experiments and both size fractions. The

most robust skill increases are again obtained with 20 vertical layers, the coarse horirzontal resolution, the SAPRC mechanism330

and emission configuration 1 (CS20E). Albeit the performance increase at individual stations may be much larger for other

experiments, CS20E yields positive MAESS values at all stations and for both particles sizes. If the fine horizontal resolution

is used (FS20E), the average performance improves for PM10 but deteriorates for PM2.5. FS20H and FM20H-P perform

equally well than CS20E on average, but are characterized by a larger spatial spread in the results.

The population downscaling experiment outperforms its base experiment or is comparable to it for both particle sizes (com-335

pare FM20H-P with FM20H in all panels of Fig. 5). Using coarse resolution meteorlogical input does not noticeably affect the

results, except for a clear decrease in correlation for the fine particles (compare FM20H-C with FM20H in Fig. 5c). A lack of
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biogenic emission, however, largely enhances the bias (compare FM20H-N with FM20H in Fig. 5a+e), reduces the correlation

(Fig. 5c+g) and worsens the overall performance as measured by the MAESS (Fig. 5d+h).

3.2 Minimum Values340

3.2.1 Temporal Mean and Standard Deviation

Fig. 6 shows the temporal mean values of the daily minimum concentrations seen in observations (the dots) plotted on the

respective model value (the underlying pattern) for the five experiments assessed in Section 3.1.1. For NO2 (Fig. 6, column 1),

the model underestimates the temporal mean concentrations on average (SBIAS < 0) and underestimates their spatial dispersion

(SRATIO < 1). The spatial pattern of the observed mean values is also not well reproduced by the model (SR < 0.25 in Fig. 6a,345

d, g, and j). While the former two error types can be improved by augmenting the horizontal resolution (compare panels a+d

with panels g+j in Fig. 6), the latter one can be reduced by using emission configuration 2 (compare panel j with m). Similar to

the results for the maxima, using 20 instead of 10 vertical layers does not noticeably improve the result for the NO2 minima

either (compare Fig. 6a with d and g with j).

As for the maxima, the average minimum O3 concentrations in (Fig. 6, column 2) are overestimated by the model (SBIAS350

> 0 in column 1). However, the spatial pattern of the observed values is generally well reproduced (RS ≥ 0.65) and so is

the spatial dispersion if the coarse horizontal mesh is used (SRATIO ≈ 1). Using the fine horizontal mesh on the one hand

reduces the bias but, on the other, inflates the spatial dispersion (SRATIO > 1, compare Fig. 6b with h and e with k). Results are

improved when 20 instead of 10 vertical layers are used with the horizontal mesh (compare panels h and k) and deteoriorate

when emission configuration 1 is applied (compare panels k and n).355

The temporal mean PM2.5 values (Fig. 6, column 3) are on average overestimated by the model (SBIAS > 0), their spatial

dispersion is underestimated (SRATIO well below unity) and their spatial pattern not well reproduced (low values for SR).

A horizontal resolution increase improves the spatial dispersion but deteriorates the spatial pattern and increases the bias,

meaning that the negative effects prevail for this factor (compare Fig. 6 c with i and f with l). A vertical resolution increase

generally has little effects on the model’s performance unless the horizontal resolution is as well increased, in which case the360

bias worsens for PM2.5 (compare c with with f and i with l). As for the maxima, results for FS20H are generally more similar

to CS20E than to FS20E.

Fig. 7 shows the respective verfication results for the temporal standard deviation of the daily minimum concentrations.

For NO2 (first column), the model on average underestimates the temporal variability (RBIAS < 0) and the associated spatial

dispersion (SRATIO well below unity). With SR values ranging in between 0.35 and 0.56, some skill is obtained for the spatial365

distribution of temporal variability. Results are insensitive to a vertical resolution increase (compare Fig. 7a with d and g with

j) but systematically improve if the horizontal resolution is augmented (compare a with g and d with j). The temporal variabilty

of the O3 minima (Fig. 7, column 2) is on average well reproduced by the model (SBIAS≈ 0). However, the associated spatial

distribution is missed (SR ≈ 0) and the dispersion overestimated (SRATIO > 1). Neither a horizontal nor a vertical resolution

increase nocticeably improves these results. The temporal variability of the PM2.5 minima (Fig. 7, column 3) is also well370
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reproduced on average and some skill is obtained for the respective spatial distribution. As for the NO2 minima, the degree of

spatial dispersion is as well underestimated for the PM2.5 minima and can be improved by a horizontal resolution increase

(compare panels c with i and f with l). Results for FS20H closely agree with those for FS20E, except for generally lower O3

and higher PM2.5 concentrations (compare the last two rows in Fig. 7).

3.2.2 Full Temporal Verfication375

Fig. 8 shows the full temporal verfication results for the daily minimumNO2 andO3 concentrations. For a correct interpretation

of the results, it is here important to note that the observed minimum concentrations in our study region are generally low and

that average differences of only a few ug/m3 can translate into large percentage bias values.

As can be seen from Fig. 8a+b, the temporal mean and standard deviation of the daily minimum NO2 concentrations are

considerably underestimated at nearly all stations in any of the applied experiments. The spatial median values for BIAS and380

RATIO can be improved with a horizontal resolution increase and either emission configuration 1 (FS10E, FM10E, FS20E

and FM20E) or configuration 2 plus population downscaling (FM20H-P), implying that this kind of downscaling is key at

this point. However, improvements in the spatial median can only be achieved at the expense of a large increase in the spatial

spread of the results, which is in line with the findings obtained for the NO2 maxima (see Section 3.1.2). For the correlation

coefficient (Fig. 8c), emission configuration 1 performs better than configuration 2, full Melchior better SAPRC and the coarse385

horizontal mesh better than the fine one. In comparision, an increase in vertical resolution from 10 to 20 layers is less efficient

in improving the correlation. Coarse resolution meterological input data and missing biogenic emissions both slightly worsen

the model performace for all applied verification measures (compare FM20H-C and FM20H-N with FM20H in panels a, c, e

and g). When considering the MAESS (Fig. 8d), the spatial median performance for the base experiment (CS10E) cannot be

improved by any of the applied alternative experiments and the aforementioned growth in the results’ spatial dispersion due to390

population downscaling can be clearly seen for FM20H-P.

Similar to the respective results for the maximum concentrations, daily minimum O3 concentrations are also on average

overestimated by the model (Fig. 8e) and the results for all verification measures can be improved by applying the full Melchior

mechanism and 20 vertical layers (Fig. 8e to h). Contrary to the maxima, the spatial median performance for the O3 minima

can be generally further improved by applying a fine horizontal mesh, the downside of an increased spatial spread being less395

pronounced than for the maxima. The overall performance in terms of MAESS (Fig. 8h) is very satisfactory for the coarse

horizontal resolution experiments run with 20 vertical layers (see CS20E and CM20E), which is in line with the results for the

maxima. However, due the relatively low spread increase mentioned above, running the fine horizontal mesh —perferably with

emission configuration 1— is more tentative for the O3 minima than for the maxima (compare CS20E, CM20E with FS20E

and FM20E in Fig. 8h and 4h). Coarse resolution meterological input data or missing biogenic emissions both have negligible400

effects on the results. Population downscaling, however, leads to a systematic improvement (compare FM20H-C, FM20H-N

and FM20H-P with FM20H in Fig. 8h).

The full temporal verifation results for the PM2.5 and PM10 minima are displayed in Fig. 9. The model systematically

overestimates the temporal mean PM2.5 concentrations and also tends to overestimate the temporal variability (Fig. 9a+b).
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Using 20 vertical layers instead of 10 enhances the correlation coefficient on the one hand but on the other generally increases405

the bias and shifts the standard deviation ratio to values larger than unity (except for moving from CS10E to CS20E, see

Fig. 9a,b,c). A horizontal resolution increase has similar effects which are, however, larger in magnitude. Switching from

SAPRC to full Melchior improves the results for all measures and nearly all experiments and overall performance gains as

measured by MAESS are largest for this kind of switch (see panels a to d). When spatial median values are considered, the

MAESS obtained with emission configuration 2 are systematically better than those obtained with configuration 1 (see Fig.410

9d). However, the spatial spread in the MAESS is larger for configuration 2 than for configuration 1. In comparision with

FM20H, overall performance deteriorates for the population downscaling experiment (see FM20H-P) and, even more so, for

the coarse meteorological input experiment (see FM20H-C). Missing biogenic emissions improve the MAESS on average, but

also increase the spatial spread (see FM20H-N). Notably, the performance increase of the CM10E experiment (with respect

to the base experiment CS10E) is positive at every station, which is rarely the case in the present study. Hence, the coarse415

horizontal mesh is again a straightforward option which already yields optimal results with a simple 10-layer setup for the

simultaneous use of the full Melchior mechanism.

For the PM10 minima, emission configuration 2 yields smaller bias values and more favourable standard devation ratios than

configuration 1 (Fig. 9e+f), but weaker correlation coefficients (panel g). Using full Melchior instead of SAPRC and 20 instead

of 10 vertical layers reduces the bias for all experiments, both factors being of roughly equal importance for this pollutant and420

temporal aggregation. Correlation coefficients are also improved, but only for the experiments run with emission configuration

1. If emission configuration 2 is used, SAPRC yields roughly the same correlation coefficients than full Melchior (Fig. 9g).

The standard deviation ratios are systematically better for SAPRC than for full Melchior and for 20 instead of 10 layers if

the fine horizontal mesh is chosen. Regarding MAESS (Fig. 9h), performance losses caused by population downscaling or

coarse resolution meterological input are less pronounced for the coarse particles than for the fine ones (compare FM20H-P425

and FM20H-C with FM20H in Fig. 9d+h). As for the fine particles, the “no biogenic emissions” experiment is also plagued by

an increased spatial variablity in the MAESS and, unlike the results for the fine particles, suffers a spatial average performance

decrease if compared to its base experiment (compare boxes and median values for FM20H-N with FM20H in Fig. 9d+h). As

expected, the modelled mean values are more realistic when biogenic emissions are taken into account (compare FM20H with

FM20H-N in Fig. 9e). As for the fine particles, optimal results are obtained with the coarse horizontal mesh run with only 10430

layers and the full Melchior mechanism (see CM10E in panel Fig. 9h). Albeit it is second choice for the fine particles, emission

configuration 1 is preferable to configuration 2 for the coarse particles.

3.3 Verification Results per Pollution Source

Figure 10 shows the spatial median MAESS with reference to the base experiment CS10E for all locations (row 1) and sep-

arately for background, industry and traffic locations (rows 2 to 4). The first column refers to the results for daily maximum435

concentrations, the second to hourly concentrations and the third to daily minimum concentrations, respectively. Improvement

over the base experiment is indicated by green, worsening by red colour shadings.
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As can bee seen from the predominantly red color shadings in the first two columns of Fig. 10, the base experiment CS10E

already provides a good overall skill, difficult to exceed when considering daily maximum or hourly concentrations. Among all

suggested model improvement factors, the use of 20 instead of 10 vertical layers yields the most balanced increases in spatial440

median performance irrespective of the applied chemical mechanism (see CS10E and CM20 in these columns). Switching from

the coarse to high horizontal resolution leads to large performance increases for particular pollutants and/or station types, but

only at the expense of performance decreases for the remaining species and sides and thus to unbalanced results.

Irrespective of the applied emission configuration and number of vertical layers, the best results for the maximum and hourly

NO2 values are obtained with a coarse horziontal resolution, except at traffic stations where the fine horizontal mesh yields445

better results if, importantly, emission configuration 2 is used without population downscaling (compare FS10E, FM10E,

FS20E and FM20E in Figure 10j and k). At traffic and industry sides, the worst results for the NO2 maxima and hourly data

are obtained with the fine horizontal mesh and emission configuration 1 (relying on population and traffic downscaling) and

with configuration 2 plus population downscaling (note the similarity between FS10E, FM10E, FS20E, FM20E and FM20H-P

in Fig. 10a,b,g,h,j,k). Hence, this kind of downscaling is not advantegeous in these cases.450

For daily minimum NO2, the coarse horizontal resolution is again the best chocice, but only in combination with emission

configuration 1 (see CS10E, CM10E, CS20E and CM20E in panels c, f, i and l). Using the coarse horizontal resolution with

configuration 2 instead yields heterogenous results, i.e. a large performance increase at industrial sides contrasted by a large

decrease at traffic sides (compare CS10H, CM10H, CS20H and CM20H in panel i with panel l).

For O3, emission configuration 1 performs systematically better than configuration 2. Among the emission configuration 2455

experiments, it is again the populuation downscaling experiment that most closely resembles the results from the configuration

1 experiments (compare experiments ending on “E” with FM20H-P). Importantly, using 20 instead of 10 vertical layers yields

performance gains in virtually any case, i.e. irrespective of the applied emission configuration, horizontal mesh, chemical

mechanims, temporal aggregation and pollution source type, and is consequently the most robust model improvement factor

for surface O3 concentrations assessed here. Second best in this context is the use of the full Melchior mechanism instead of460

SAPRC. Note also that the results for the maxima and hourly data are more dissimilar to each other than for the remaining

pollutants.

As opposed to the findings for O3, emission configuration 2 is the better choice for PM2.5, particulary considering daily

minimum concentrations at all kind of sides, as well as as maximum and hourly concentrations at industrial and traffic sides.

The effects of a vertical resolution increase are heterogeneous. At background sides (see second row in Fig. 10 and also465

Supplementary Figure 2), results are improved for the daily maxima but deteriorate for the minima, with very little effects

on the results for hourly concentrations. At industrial and traffic sides, however, results generally worsen for this factor. At

background sides, SAPRC is generally superior to full Melchior whereas the opposite is found at industrial and traffic sides. As

for O3, the horizontal resolution increase is not advantegeous for PM2.5 either, except for the daily minimum concentrations

at industrial and traffic sides when using emission configuration 1.470

The applied factor changes are generally less effective for PM10 than for the other three pollutants. Largest performance

gains are obtained for daily maximum concentrations, particuluarly at traffic sides, if the fine horizontal mesh is used in
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combination with 20 vertical layers and emission configuration 1 (see experiments FS20E and FM20E in panels a, d, g, and

j). The same mesh, however, yields largest performance losses for minimum concentrations at background sides if emission

configuration 2 is applied (see panel f). Albeit the differences are generally weak, the SAPRC mechanism is preferable for475

maximum and hourly concentrations whereas full Melchior is preferable for the minima.

Among the three specific sensitivity experiments, the “population downscaling” (FM20H-P) experiment exhibits the largest

performance deviations from their common base experiment (FM20H), followed by the “no biogenic emissions” (FM20H-

N) and “coarse meteorology” (FM20H-C) experiments. FM20H-P performs particularly bad for maximum and hourly NO2

concentrations at industy and traffic sides (see panels g, h, j and k) and particularly well for minimum O3 concentrations at480

traffic sides (see panel l). Curiously, among all considered experiments, FM20H-N yields the best results for minimum PM2.5

concentrations at industry and traffic sides (see panels i and l) and for maximum NO2 concentrations at traffic sides (see panel

j). The good skill scores at these stations types arise from error compensation effects. Namely, the positive bias is for minimum

PM2.5, which is smaller at traffic and industry sides than at background sides because the observed concentrations are higher

there, is improved when biogenic emissions are turned off, which translates into better MAESS values. For maximum NO2,485

removing this kind of emissions enhances the temporal correlation, brings the standard deviation closer to unity and finally also

improves the MAESS. This, in turn, means that the inclusion of biogenic emissions in the remaining experiments deteriorates

the temporal variability and day-to-day sequence of the modelled minimum NO2 time series if compared with observations.

At background sides, however, the NO2 and PM2.5 maxima are generally underestimated by the model and the exclusion of

biogenic emissions further increases this negative bias (see Fig. 10d and Supplementary Figure 2). The pronounced reduction490

of the O3 maxima at background sides in the FM20H-N experiment, as compared with FM20H, points to an active role of

biogenic VOCs in this case (see Supplementary Figure 2e). For FM20H-C, deviations from the base experiment are largest for

the minima at industry sides and are otherwise generally weak (see Fig. 10i).

4 Discussion and Conclusions

In this study, a series of 19 sensitivity experiments was carried out with the chemical weather forecasting model CHIMERE495

over the northwestern Iberian Peninsula for the 2018 summer season in order to assess the model’s capablitiy to reproduce in-

situNO2,O3, PM10 and PM2.5 surface concentrations on daily to hourly timescale. The range of applied model experiments

covers the effects of distinct emission configurations, horizontal and vertical resolution setups and model chemistries. With the

help of three secondary experiments, the impacts of population downscaling, coarse resolution meteorological input data and

missing biogenic emissions are discussed in addition. All these experiments were driven by meteorological data from WRF500

and chemical boundary data from ECMWF C-IFS.

The obtained results are very heterogeneous and the applied model improvement efforts, often associated with consider-

able computational costs, do generally not lead to an unrestricted model improvement. For most efforts, verfication results

improve for some aspects but worsen for others. Nonetheless, one single factor has been identified that improves the model in

a systematic way, returning better results for virtually all aspects of the verification.505
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The first take-home message is that the use of an up-to-date and sophistically downscaled anthropogenic emission inventory

(configuration 1: EMEP for the year 2017 downscaled with landuse, population and traffic proxies as well as large point

sources), if compared to an older inventory downscaled with basic options (configuration 2: HTAP v2.2 for the year 2010

downscaled with landuse only), on the one hand improves the modelled O3 and PM10 concentrations, but on the other hand

deteriorates the results for NO2 and PM10. This is in line with Russo et al. (2019), in the sense that an upgraded emission510

inventory does not necessarily improve the modelled pollutant concentrations with respect to observations in all aspects.

Second, heterogeneous results are obtained for the performance changes associated with the chemical mechanism. While the

performance forNO2 is practically unrelated to the chosen mechanism, the full Melchior mechanim is pereferable to SAPRC if

O3 concentrations —at any temporal scale— are considered. For particulate matter, SAPRC is preferable for the daily maxima

and hourly concentrations and full Melchior for the daily minima.515

Third, an increase in the horizontal resolution of the CHIMERE domain and associated emissions from 0.15◦× 0.15◦ to

0.05◦× 0.04◦ does not lead to a systematic model improvement but rather to a large increase in the spatial variability of the

results. In line with Valari and Menut (2008), we have indications that this is caused by the noise increase in high resolution

meteorological input data and, to an even larger degree, by the populuation downscaling procedure used to reallocate the raw

data from the applied anthropogenic emission inventories on the subgrid scale. If this kind of downscaling is used, the model520

overestimates the temporal mean value of the daily maximum and hourly concentrations at traffic and industry sides. The same

applies to the temporal standard deviation, i.e. to the model’s capabiltiy do simulate the degree of temporal variability from

one day to another.

Contrary to the effects obtained with an increased horizontal resolution, the use of 20 instead of 10 vertical layers within the

lower to middle troposfere (999 to 500 hPa) systematically improves the model results for nearly all aspects of the verifcation.525

All together, and as long as top-down emission inventories coming on a relatively coarse spatial and temporal resolution

are applied, we recommend the use of 20 model layers together with a horizontal resolution not much finer than the native

resolution of the inventory. In this context, the resolution of the coarse domain applied here (0.15◦×0.15◦) may not be optimal

and in future studies should be approximated to the native grid of the emission inventory (i.e. 0.1◦× 0.1◦ for both HTAP and

EMEP) in order to see whether the results can be further improved. Likewise, a region-specific optimization of the downscaling530

procedures used to re-allocate raw emissions on the subgrid scale according to proxy data for population and traffic density

would likely yield better results for the northwestern Iberian Peninsula, particularly for the NO2 and PM2.5 concentrations.

As a final remark, the present study has explpored a broad range of model performance factors with empirical methods,

mainly to provide practial recommendations for the numerical modelling community. In the future, our results should be

complemented by analytical in-depth studies focussing on single factors.535

Code availability. The CHIMERE and WRF source codes are publicly available from http://www.lmd.polytechnique.fr/chimere and http:

//www2.mmm.ucar.edu/wrf/users/downloads.html, respectively.
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Figure 2. Observed (dots) vs. modelled (underlying pattern) temporal mean values for the daily maximum concentrations of NO2, O3 and

PM2.5 and the 5 experiments marked with an asterisk in Table 3, all run with the SAPRC mechanism. Also shown is the spatial mean

difference between the modelled and observed mean values (SBIAS), their correlation coefficient (SR), standard deviation ratio (SRATIO)

and mean absolute error (SMAE). 26
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Figure 4. Temporal verification results for daily near-surface maximum NO2 (left) and O3 (right). Row 1: percentage bias (BIAS), row

2: Pearson correlation coefficient (R), row 3: ratio of standard deviations (RATIO), row 4: mean absolute error skill score (MAESS) with

reference to the base experiment CS10E. Boxplots are calculated upon the point-wise verification results at all available stations. Experiments

are explained and grouped as in Table 3.
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Figure 5. Temporal verification results for daily near-surface maximum PM2.5 (left) and PM10 (right). Row 1: percentage bias (BIAS),

row 2: Pearson correlation coefficient (R), row 3: ratio of standard deviations (RATIO), row 4: mean absolute error skill score (MAESS) with

reference to the base experiment CS10E. Boxplots are calculated upon the point-wise verification results at all available stations. Experiments

are explained and grouped as in Table 3.
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difference between the modelled and observed mean values (SBIAS), their correlation coefficient (SR), standard deviation ratio (SRATIO)

and mean absolute error (SMAE).
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SBIAS: -0.9 SR: 0.43 SRATIO: 0.58 SMAE: 1.3 SBIAS: 0.8 SR: -0.04 SRATIO: 1.53 SMAE: 5.0 SBIAS: 0.4 SR: 0.48 SRATIO: 0.43 SMAE: 0.7 

SBIAS: -0.9 SR: 0.44 SRATIO: 0.59 SMAE: 1.3 SBIAS: 0.4 SR: -0.04 SRATIO: 1.43 SMAE: 4.8 SBIAS: 0.6 SR: 0.38 SRATIO: 0.43 SMAE: 0.8 

SBIAS: -1.3 SR: 0.52 SRATIO: 0.37 SMAE: 1.4 SBIAS: -0.3 SR: -0.02 SRATIO: 1.25 SMAE: 5.0 SBIAS: 1.0 SR: 0.36 SRATIO: 0.4 SMAE: 1.0 

Figure 7. Observed (dots) vs. modelled (underlying pattern) temporal standard deviation values for the daily minimum concentrations of

NO2, O3 and PM2.5 and the 5 experiments marked with an asterisk in Table 3, all run with the SAPRC mechanism. Also shown is the

spatial mean difference between the modelled and observed standard deviation values (SBIAS), their correlation coefficient (SR), standard

deviation ratio (SRATIO) and mean absolute error (SMAE).
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Figure 8. Temporal verification results for daily near-surface minimum NO2 (left) and O3 (right). Row 1: percentage bias (BIAS), row

2: Pearson correlation coefficient (R), row 3: ratio of standard deviations (RATIO), row 4: mean absolute error skill score (MAESS) with

reference to the base experiment CS10E. Boxplots are calculated upon the point-wise verification results at all available stations. Experiments

are explained and grouped as in Table 3.
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Figure 9. Temporal verification results for daily near-surface minimum PM2.5 (left) and PM10 (right). Row 1: percentage bias (BIAS),

row 2: Pearson correlation coefficient (R), row 3: ratio of standard deviations (RATIO), row 4: mean absolute error skill score (MAESS) with

reference to the base experiment CS10E. Boxplots are calculated upon the point-wise verification results at all available stations. Experiments

are explained and grouped as in Table 3.
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Figure 10. Spatial median mean absolute error skill score (MAESS) with respect to the base experiment CS10E for daily maximum, hourly

or daily minimum concentrations (columns 1 to 3 respectively) at all available stations (row 1) or at background, industrial or traffic stations

(row 2 to 4 respectively).
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Parameter Option

Microphysics WRF single-moment 6-class scheme

Longwave radiation Rapid Radiative Transfer Model

Shortwave radiation Dudhia scheme

Surface layer MM5 similarity

Land surface 5-layer thermal diffusion

Planetary boundary layer Yonsei University scheme

Cumulus Kain-Fritsch scheme

Table 1. WRF physics common to all sensitivity tests
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Parameter Option

Nr. Gauss-Seidel iterations 3

Chemical time-step adaptive

Physical time-step 5 minutes

Nr. of aerosol size sections 9

Chemically-active aerosols yes

Sea-salt emission parameterization inert, parametrization 0

Biogenic emissions MEGAN

Mineral dust emission On

Saltation and sandblasting scheme Alfaro and Gomes (2001), Menut et al. (2005)

Wind threshold estimation Shao and Lu (2000)

Effect of soil moisture on mineral dust emissions Fécan et al. (1998)

Secondary organic aerosol scheme medium complexity

ISORROPIA coupling yes

Inclusion of carbonaceous species yes

Aerosol dry deposition Zhang et al. (2001)

Horizontal advection scheme van Leer

Vertical advection scheme upwind

Urban correction off

Resuspension process off

Deep convection on

Lateral boundary conditions from C-IFS or MACC

Table 2. CHIMERE parameters common to all sensitivity tests
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Acronym Bio. Emis. Anth. Emis. Downscaling Lu database Hor. Res. (lat. × lon.) Layers Mechanism Runtime

CS10E* MEGAN EMEP lu, popul, traffic, lsp GlobCover WRF: 12×12km, CH: 0.15◦× 0.15◦ 10 SAPRC 436s

CM10E " " " " " " Full Melchior 437s

CS20E* " " " " " 20 SAPRC 928s

CM20E " " " " " " Full Melchior 947s

FS10E* " " " " WRF: 4×4km, CH: 0.05◦× 0.04◦ 10 SAPRC 1598s

FM10E " " " " " " Full Melchior 1633s

FS20E* " " " " " 20 SAPRC 3582s

FM20E* " " " " " " Full Melchior 3755s

CS10H " HTAP lu USGS WRF: 12×12km, CH: 0.15◦× 0.15◦ 10 SAPRC not saved

CM10H " " " " " " Full Melchior "

CS20H " " " " " 20 SAPRC "

CM20H " " " " " " Full Melchior "

FS10H " " " " WRF: 4×4km, CH: 0.05◦× 0.04◦ 10 SAPRC ”

FM10H " " " " " " Full Melchior "

FS20H " " " " " 20 SAPRC "

FM20H " " " " " " Full Melchior "

FM20H-P " " lu, popul " " " " "

FM20H-C " " lu " WRF: 12×12km, CH: 0.05◦× 0.04◦ " " "

FM20H-N None " " " WRF: 4×4km, CH: 0.05◦× 0.04◦ " " "

Table 3. Overview of the applied sensitivity tests, C = coarse horizontal resolution, F = fine horizontal resolution, 10 = number of vertical

layers, S = SAPRC, M = full Melchior, E = EMEP, H = HTAP, P = population downscaling, C = coarse meteorology, N = no biogenic

emissions, lu = landuse, popul = population, lsp = emission allocation according to large point sources, Runtime in seconds for a typical

summertime heat day (August 5th, 2018)
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